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Abstract: 
Feature Extraction (FE) techniques are widely used in many applications to pre-process data in order to reduce the 
complexity of subsequent processes. A group of Kernel-based nonlinear FE (KFE) algorithms has attracted much 
attention due to their high performance. However, a serious limitation that is inherent in these algorithms -- the 
maximal number of features extracted by them is limited by the number of classes involved -- dramatically degrades 
their flexibility. Here we propose a modified version of those KFE algorithms (MKFE). This algorithm is developed 
from a special form of scatter-matrix, whose rank is not determined by the number of classes involved, and thus 
breaks the inherent limitation in those KFE algorithms. Experimental results suggest that MKFE algorithm is 
especially useful when the training set can only sparsely represent the distribution of the underlying problem. 
Keywords: kernel-based feature extraction (KFE), kernel trick, modified kernel-based feature extraction 
(MKFE), nonlinear feature extraction, support vector machines (SVMs). 

 

1. Introduction 

Feature Extraction (FE) plays a pivotal 
role in many applications such as pattern 
recognition and data mining. Among a large 
number of FE algorithms  developed over the 
past three decades, a group of kernel-based 
nonlinear FE algorithms stand out recently 
due to their high performance [1-5]. Two 
typical examples of this class of algorithms 
are the Kernel Fisher Discriminant (KFD) 
algorithm proposed by Mika, et. al. [1], and 
the Kernel-based nonlinear FE (KFE) 
algorithm proposed by Ma [4]. Both 
algorithms employed a technique referred to 
as the “kernel trick” to introduce non-
linearity into the well-established linear 
algorithm. KFD is a nonlinear extension of 
the Fisher’s criterion, and was mainly 
developed for two-classes problem, while 
KFE is a nonlinear extension of the linear 

discriminant analysis (LDA), and is 
applicable to multiple-class problem.  

However, both algorithms can only 
extract at most L-1 features, where L is 
number of classes involved. In this paper we 
propose a modified algorithm, which breaks 
the above limitation. Experimental results 
suggest that this Modified Kernel-based 
nonlinear Feature Extraction (MKFE) 
algorithm is more useful for smaller training 
set.  

Because the MKFE algorithm is a direct 
development of the KFE algorithm, in order 
to facilitate the reader’s understanding, we 
will briefly describe the KFE algorithm in 
Section 2. The MKFE algorithm is derived 
and presented in Section 3. The performance 
of the MKFE algorithm is demonstrated by a 
real-world experiment in Section 4.  
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2. Kernel-based Nonlinear Feature 
Extraction 

A linear FE problem can be defined as 
follows: If we want to construct the optimal 
m-feature new patterns from original n-
feature patterns given a criterion J, we need 
to find an n-by-m matrix E, which generates 
an optimal m-feature sample, R, from the 
original n-feature sample, X.  That is, 

 [7]. T=R E X
Thus, selecting a criterion J to 

quantitatively measure optimal class-
separability is generally a prerequisite for 
developing FE algorithm. Although Bayes 
classification error, Pe, is a natural criterion, 
its difficulty of estimation [6] makes its direct 
application impractical. Due to its simplicity, 
intuitive appeal, relatively good performance, 
and robustness, an alternative, scatter-matrix 
based linear criteria is widely adopted [7]. 
This criterion can be represented as: 
 ,                                 (1) )(1 bwtrJ SS 1−=
where  denotes the trace operation of a 
matrix A.  is the within-matrix, and 
indicates the spread of samples, , around 
the individual class mean, . 
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bS  is the between-class matrix, and indicates 
the spread of mean of each class, M , around 
the mean of all the classes, . 
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The solution matrix E to the linear FE 
problem given criterion J1 is therefore [7]: 

   ,                          (3)   mnmeee ×= ],, 21[E
where ei, i=1…m, are eigenvectors of matrix 

corresponding to the m largest 
eigenvalues. 

1
w b
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This linear FE algorithm has three critical 
drawbacks: (a) It will fail when the sample 

mean, Mi, of any class i, is the same as the 
sample mean of all samples, M0; (b) This FE 
algorithm can only exploit linear class 
separability; (c) It can only extract L-1 
features for a L-class problem. The first two 
drawbacks motivate us to extend this linear 
FE algorithm to the nonlinear domain, while 
the third one is handled in the next section. 
The technique we employed here is named 
“kernel trick”[10]. The basic idea of the 
kernel trick is to simply replace the dot 
product in a Euclidean space with a nonlinear 
kernel function. That is: 

),(, YXYXYX KT →>=< ,               (4) 
where the kernel function, K(X,Y), maps a 
subspace in (Rn × Rn) to a subspace in R. This 
transformation can be interpreted as 
follows[8]: 
(1) Map a sample X from a subspace of Rn, or 

input space, I, to another Euclidean 
space, or feature space, H, using a 
functional vector, : Φ

 .    HI →:Φ
(2) The kernel function, K(X,Y), can be 

defined as a dot-product in space H. That 
is,  

         (5) )()(),( YΦXΦYX TK =
Therefore, a kernel function implicitly 
introduces both a Euclidean space H, and a 
map Φ .  

The general formulation of a nonlinear 
FE problem can be defined as follows: 

 ,            (6) 
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where F is a nonlinear functional vector 
mapping a n-feature sample, X, to a m-feature 
extracted sample, R;  

According to the theory of reproducing 
kernel, we can represent the nonlinear FE 
function, Fi(X), i=1…m, in Equation (6) as a 
linear combination of a group of kernel 
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functions, K(Xj,X), j=1…N, the general form 
of the nonlinear FE (6) can be expressed as: 

        (7) 
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     αi,j are a set of coefficients; 
and  
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where Xi (i=1…N) are a set of representative 
samples, or the training set.  

Thus developing a nonlinear FE 
algorithm is equivalent to finding a matrix, A, 
which maximizes the class separability of the 
extracted samples, R. 

Substituting Equation (5) into (7) we 
obtain: 
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The nonlinear FE defined in Equation (6) is 
thus reformulated to be a linear FE in the 
feature space, H, which enables the 

established linear FE solution (3) readily 
applicable. 

Now, we define kernel within-matrix, Gw, 
for a set of samples, Xi, i = 1…N, as: 
                   (9) )()()( XXw

T
w X ΦΦΦ

= ΘSΘG
and define kernel between-class matrix, Gb, 
for a set of patterns Xi, i = 1…N, as: 
                   (10) )()()( XXb

T
b X ΦΦΦ
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It is easy to show that the rank of matrix 
Gw is not bigger than N-L, while the rank of 
matrix Gb is not bigger than L-1, where N is 
number of samples in the training set, and L 
is number of classes. Therefore, in order to 
make kernel within-matrix, Gw, invertible, a 
conditioned kernel within-matrix, WG , is 
introduced as: 

 IGG τ+= ww                                  (11) 
where τ > 0 and is called the conditioning 
coefficient, and I is a identity matrix.  

The KFE algorithm can thus be obtained 
by applying (5), (7), (8), (9), (10), and (11) to 
(3), as well as some algebra manipulation. 
The algorithm can be finally described as:  
The matrix A in (7) that maximizes criterion 
J1 in (1) can be formed by m eigenvectors 
corresponding to the m largest eigenvalues of  
matrix bw G1−G . That is:  
                    (12) ][ 21 maaaA =
where iiibw aaGG λ=− )( 1 , i = 1…m, and λ1 ≥ 
λ2 ≥ … ≥ λm. 

3. Modified Kernel-based Feature 
Extraction 

Because Rank(Gb) ≤ L-1, the KFE 
algorithm mentioned previously can only 
extract a maximum of L-1 meaningful 
features even if m is larger than L-1. This 
limitation motivates us to modify the KFE 
algorithm to allow it to extract up to N 
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features, where N is the number of samples in 
the training set. This is achieved by 
modifying the formulation of the kernel 
between-class matrix Gb to increase its rank.  
In order to simplify our following derivation, 
we assume the underlying problem is a two-
class problem, while the fundamental idea 
can be readily extended to multi-class 
problems.  

Fortunately, a result from statistical 
discriminant analysis, nonparametric 
between-class matrix, Snb, provides us with 
an alternative to the between-class matrix Sb 
[7]. The estimate of Snb can therefore be 
expressed as: 
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 where k is the number of neighbor patterns 
used, and  is the estimated mean 
of the k nearest neighbor (NN) to 

sample , or 

(1) (2)(k iM X

)(2
iX (1) (2) (1)

1

1( )
k

k i aN
ak =

= ∑X

(2)
iX

NM X , 

where  is the a(1)X

(1)( i

aNN

)

th nearest neighbor (NN) 
in class 1 to the sample  in class 2. 

 can be interpreted accordingly. (2)
kM X

1
1

,
, +

=
kX

kXw
β

, where 

)||||,||min(||
)||||,||max(||

2)2(2)1(

2)2(2)1(

,
kNNkNN

kNNkNN
kX XXXX

XXXX
−−
−−

=β  . 

kXw ,  is a coefficient that more heavily 
weights the patterns falling in the boundary 
area between two classes. From (13), we 
know that the rank of Snb is determined by the 
internal structure of the samples in the 
training set, and is not limited by the number 
of classes involved.  

We therefore define the kernel 
nonparametric between-class matrix Gnb, for 
samples Xi, i = 1…N, is definied as: 
               (14) )()(,)( XXnb

T
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By substituting (5) and  (13) into (14), we 
obtain: 
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Note that 1  is a column vector, whose 
elements are all one, ~(i) denotes the class 
different from class i, and  is 
defined in (7).  
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Therefore, the MKFE can be obtained 
simply by replacing the Gb in the KFE 
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algorithm with Gnb, as defined in (15). The 
MKFE can be thus described as: 
The matrix A in (7) that maximizes criterion 
J1 in (1) can be formed by m eigenvectors 
corresponding to the m largest eigenvalues of 
matrix nbw GG 1− . That is:  
  [A =                 (16) ]21 maaa
where iiinbw aaGG λ=− )( 1 , i = 1…m, and λ1 

≥ λ2 ≥ … ≥ λm. 

4. Experiment 

In order to test the efficacy of our MKFE 
algorithm, we applied it to a set of two-class 
target signatures obtained using High Range 
Resolution (HRR) radar. The kernel function 
employed in the MKFE algorithm is an RBF 
kernel function with γ = 1, and the number of 
NNs, or k in (15), is set to 3 empirically. 
RBF-based SVM classifiers [9] are employed 
to classify the new samples constructed by 
the MKFE algorithms from the original HRR 
signatures. We took 15% and 20% 
percentage of HRR signatures from the 
whole data set to use as the training set in two 
different experiments respectively, and used 
the corresponding remaining samples as the 
testing set. We repeated the experiment 100 
times over 100 different random realizations 
of the training set and testing set to reduce 
the statistical variance, and the mean 
classification rates are plotted out in Figure 1.  

As we mentioned previously, because this 
is a two-class problem, both KFD and KFE 
algorithms can only extract a single feature 
for each new samples. In contrast, the 
number of extracted features in each new 
samples contracted by MKFE is only limited 
by the number of original HRR signatures in 
the training set. In our experiment, we set 
MKFE to extract from 1 to 25 features for 
each new sample. We know that, when 
MKFE only extracts 1-feature, it is 
equivalent to the KFE algorithm. Thus, we 
can consider the results in Figure 1 when 

m=1 as the performance of the original KFE 
algorithm on this two-class problem. In this 
way, Figure 1 demonstrates that the MKFE 
enhances the performance of KFE by 
increasing the number of extracted features 
for each new sample.  

From Figure 1, we can also observe that 
the MKFE outperforms KFE by about 2% 
when 20% of the whole HRR signature set is 
used as the training set, while it outperforms 
KFE by 4% when only 15% of the whole 
HRR signature set is used as the training set. 
When m=25, we can see that the MKFE 
algorithm makes the classification rate 
obtained when only 15% signatures are used 
as training set pretty close to the 
classification rate obtained when 20% 
signatures are used as training set. This 
observation suggests that our proposed 
MKFE algorithm is especially useful when 
the training information is limited, or the size 
of training set is small. 

 
 

 
Figure 1. Classification rates vs. Number of 

Extracted Features, m 
 
 

5. Conclusions 

In this paper we have proposed a 
modified version of earlier KFE algorithms. 
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This algorithm is based on a special form of 
scatter-matrix, whose rank is not determined 
by the number of classes involved, and thus 
breaks the inherent limit in those KFE 
algorithms. Experiment results suggest that 
our proposed MKFE algorithm is especially 
useful when the training set is small.  

In order to make this algorithm more 
practical, there are several open lines of 
research, including 1) how to refine this 
algorithm to make it less computationally 
demanding, 2) how to theoretically guide 

users in selecting a set of optimal algorithm 
parameters for a particular problem.   
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